lumber core construction - translation to ρωσικά
Diclib.com
Λεξικό ChatGPT
Εισάγετε μια λέξη ή φράση σε οποιαδήποτε γλώσσα 👆
Γλώσσα:

Μετάφραση και ανάλυση λέξεων από την τεχνητή νοημοσύνη ChatGPT

Σε αυτήν τη σελίδα μπορείτε να λάβετε μια λεπτομερή ανάλυση μιας λέξης ή μιας φράσης, η οποία δημιουργήθηκε χρησιμοποιώντας το ChatGPT, την καλύτερη τεχνολογία τεχνητής νοημοσύνης μέχρι σήμερα:

  • πώς χρησιμοποιείται η λέξη
  • συχνότητα χρήσης
  • χρησιμοποιείται πιο συχνά στον προφορικό ή γραπτό λόγο
  • επιλογές μετάφρασης λέξεων
  • παραδείγματα χρήσης (πολλές φράσεις με μετάφραση)
  • ετυμολογία

lumber core construction - translation to ρωσικά

CONCEPT IN CRYPTOGRAPHY
Hard core predicate; Hard-core bit; Hard core bit; Goldreich-Levin bit; Goldreich-Levin theorem; Goldreich-Levin construction; Trapdoor predicate; Goldreich-Levin Construction

lumber core construction      
столярно-реечная плита
lumber core construction      

строительное дело

столярно-реечная плита

timber tree         
  • abbr=on}} board
  • The harbor of Bellingham, Washington, filled with logs, 1972
  • floating logs]] in [[Kotka]], [[Finland]]
  • The longest plank in the world (2002) is in Poland and measures 36.83 metres (about 120 ft 10 in) long.
  • Special fasteners are used with treated lumber because of the corrosive chemicals used in its preservation process.
WOOD THAT HAS BEEN PROCESSED INTO BEAMS AND PLANKS
Dimensional lumber; Dimensional wood; Dimension wood; Dimension lumber; Timbered; Felled tree; Timber tree; Timber; Dimensioned lumber; Dimensioned timber; Rough lumber; Dimensional timber; Timbers; Dimber; 2x4 wood; 2x4 board; Lumber grade; 2×4 wood; 2×4 board; Structural wood

общая лексика

строевое дерево

Ορισμός

lumber
I
n. (esp. AE) green; seasoned lumber (CE has timber)
II
v. (P; intr.) the bear lumbered through the forest
III
v. (colloq.) (BE) (D; tr.) ('to burden') to lumber with (I've been lumbered with all their problems)

Βικιπαίδεια

Hard-core predicate

In cryptography, a hard-core predicate of a one-way function f is a predicate b (i.e., a function whose output is a single bit) which is easy to compute (as a function of x) but is hard to compute given f(x). In formal terms, there is no probabilistic polynomial-time (PPT) algorithm that computes b(x) from f(x) with probability significantly greater than one half over random choice of x.: 34  In other words, if x is drawn uniformly at random, then given f(x), any PPT adversary can only distinguish the hard-core bit b(x) and a uniformly random bit with negligible advantage over the length of x.

A hard-core function can be defined similarly. That is, if x is chosen uniformly at random, then given f(x), any PPT algorithm can only distinguish the hard-core function value h(x) and uniformly random bits of length |h(x)| with negligible advantage over the length of x.

A hard-core predicate captures "in a concentrated sense" the hardness of inverting f.

While a one-way function is hard to invert, there are no guarantees about the feasibility of computing partial information about the preimage c from the image f(x). For instance, while RSA is conjectured to be a one-way function, the Jacobi symbol of the preimage can be easily computed from that of the image.: 121 

It is clear that if a one-to-one function has a hard-core predicate, then it must be one way. Oded Goldreich and Leonid Levin (1989) showed how every one-way function can be trivially modified to obtain a one-way function that has a specific hard-core predicate. Let f be a one-way function. Define g(x,r) = (f(x), r) where the length of r is the same as that of x. Let xj denote the jth bit of x and rj the jth bit of r. Then

b ( x , r ) := x , r = j x j r j {\displaystyle b(x,r):=\langle x,r\rangle =\bigoplus _{j}x_{j}r_{j}}

is a hard core predicate of g. Note that b(x, r) = <x, r> where <·, ·> denotes the standard inner product on the vector space (Z2)n. This predicate is hard-core due to computational issues; that is, it is not hard to compute because g(x, r) is information theoretically lossy. Rather, if there exists an algorithm that computes this predicate efficiently, then there is another algorithm that can invert f efficiently.

A similar construction yields a hard-core function with O(log |x|) output bits. Suppose f is a strong one-way function. Define g(x, r) = (f(x), r) where |r| = 2|x|. Choose a length function l(n) = O(log n) s.t. l(n)n. Let

b i ( x , r ) = j x j r i + j . {\displaystyle b_{i}(x,r)=\bigoplus _{j}x_{j}r_{i+j}.}

Then h(x, r) := b1(x, r) b2(x, r) ... bl(|x|)(x, r) is a hard-core function with output length l(|x|).

It is sometimes the case that an actual bit of the input x is hard-core. For example, every single bit of inputs to the RSA function is a hard-core predicate of RSA and blocks of O(log |x|) bits of x are indistinguishable from random bit strings in polynomial time (under the assumption that the RSA function is hard to invert).

Hard-core predicates give a way to construct a pseudorandom generator from any one-way permutation. If b is a hard-core predicate of a one-way permutation f, and s is a random seed, then

{ b ( f n ( s ) ) } n {\displaystyle \{b(f^{n}(s))\}_{n}}

is a pseudorandom bit sequence, where fn means the n-th iteration of applying f on s, and b is the generated hard-core bit by each round n.: 132 

Hard-core predicates of trapdoor one-way permutations (known as trapdoor predicates) can be used to construct semantically secure public-key encryption schemes.: 129 

Μετάφραση του &#39lumber core construction&#39 σε Ρωσικά